

Development of a novel high-performance selflubricating micro/nano mould based on 2D material nanocomposite

Dr Nan Zhang

Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin)

University College Dublin

07/05/2021

BACKGROUND

Mismatch of thermal expansion coefficient: Nickel: $K=13 \times 10^{-6} 1/K$, PMMA: $K=70 \times 10^{-6} 1/K$

BACKGROUND

BACKGROUND

Distortion and damage of surface micro patterns

500µm

[2]

(C)

MOTIVATION

Coatings	Friction coefficient	Coating methods	Advantages	Disadvantages
Fluoropolymer coatings (PTFE, PFPE, FEP)	0.05~0.1	PVD, CVD,	Hydrophobic surface	Poor wear resistanceLower service temperature
Cubic boron nitride (c- BN) coating	 Dry: 0.2~0.6 Humid: <0.1 	CVD	High service temperatureHigh oxidation resistanceHigh wear resistance	Poor adhesion to the substrateHigh residual stressExpensive coating facility
Self-assembled monolayer coatings (SAM)	0.07~0.1	Dip coating Molecular vapor deposition	Low-cost process	Low wear resistanceLow thermal stability
Diamond-like carbon (DLC)	 Dry: 0.001~0.05 Humid: 0.2~0.3 	Sputtering, thermal evaporation, PECVD	High hardnessLow friction	 High internal stress Poor adhesion to substrate Restriction in thickness Expensive to CVD coating
Graphene/ Graphene oxide	Dry: 0.15~0.2Humid: 0.15~0.2	CVD, Chemical and mechanical exfoliation	Stable coefficient of friction;Good filler material	 Difficult for large-area coatings 0.1-0.2 nm coating thickness
MoS ₂ and WS ₂	 Dry: 0.02~0.06 Humid: 0.15~0.25 	Sputtering, thermal evaporation, CVD	High temperature	 Lower wear resistance of MoS₂ WS₂ loses its lubricating properties in humid environments

MOTIVATION

- Image: Second secon
 - ✓ Mechanical properties: *High microhardness and longer tool life*
 - ✓ Tribological properties: *Low friction and adhesion*
 - ✓ Surface roughness: *Less than 100nm*
 - ✓ Dimensional accuracy: *high dimensional accuracy*

2D MATERIALS SELECTION

AFM tip-based technology

Experimental methods:

 ✓ Types of 2D material: *GO*; *MoS*₂; *WS*₂

 ✓ Concentration of 2D material: *GO* & *MoS*₂: 0.1, 0.2, 0.5, 1.0 g/L *WS*₂: 0.1, 0.14, 0.2, 0.5 g/L

ELECTROLYTE PREPARATION

Structures of few-layered MoS_2/WS_2 (a) and GO (b), respectively; preparation of electroforming solution containing 2D materials dispersion (c).

Electroforming experimental setup for the fabrication of 2D materials reinforced nickel moulds (a) and related demoulding method for releasing electroformed moulds (b).

SURFACE MORPHOLOGY

Nickel/GO composite moulds Nickel/MoS₂ composite moulds Nickel/WS₂ composite moulds 0.2 g/L GO 0.1 g/L GO 0.14 g/L WS2 0.1 g/L WS2 0.1 g/L WS2 0.14 g/L WS2 GO aggregates 0.5 g/L GO 1.0 g/L GO 0.2 g/L WS2 0.5 g/L WS2 0.2 g/L WS2 0.5 g/L WS2 Large S₂ particle Large WS₂ particles Large WS₂ particles Large WS₂ particles arge GO particles

CROSS-SECTION MORPHOLOGY OF NICKEL/ GO MOULDS

Cross-section morphology of electroformed nickel/GO composite moulds, fabricated in nickel sulfamate bath with various concentrations of GO: (a) 0.1 g/L GO; (b) 0.2 g/L GO; (c) 0.5 g/L GO; (d) 1.0 g/L GO; and corresponding GO content in the deposit (f), where the content of GO is determined by C content in the deposit.

CROSS-SECTION MORPHOLOGY OF NICKEL/M_OS₂ MOULDS

Cross-section morphology of electroformed nickel/MoS₂ composite moulds (a-e), fabricated in nickel sulfamate bath with various concentrations of MoS₂: (a) 0.1 g/L MoS_2 ; (b) 0.2 g/L MoS_2 ; (c) 0.5 g/L MoS_2 ; (d) 1.0 g/L MoS_2 ; and corresponding MoS₂ content in the deposit (f), where the content of MoS₂ is determined by Mo content in the deposit.

CROSS-SECTION MORPHOLOGY OF NICKEL/WS₂ MOULDS

Cross-section morphology of electroformed nickel/WS₂ composite moulds (a-e), fabricated in nickel sulfamate bath with various concentrations of WS₂: (a) 0.1 g/L WS_2 ; (b) 0.14 g/L WS_2 ; (c) 0.2 g/L WS_2 ; (d) 0.5 g/L WS_2 ; and corresponding WS₂ content in the deposit (f), where the content of WS₂ is determined by W content in the deposit.

MICROSTRUCTURE ANALYSIS

XRD patterns of electroformed pure nickel mould and nickel composite moulds fabricated in nickel sulfamate bath with various concentrations of 2D materials: (a) nickel/GO composite moulds; (b) nickel/MoS₂ composite moulds; (c) nickel/WS₂ composite moulds.

Sherrer's equation • L is the average crystallite size, β is the full-width half (FWHM) maxima. $L = \left(\frac{K\lambda}{\beta \,\cos\theta}\right)$

• *FWHM* is used to calculate the crystallite size.

FWHM broadening means the *refinement* of crystallite size.

□ FWHM is broadening with *increasing 2D materials concentration* and the cases of *WS*₂ are more *prominent*.

MICROHARDNESS AND CRYSTALLITE SIZE

SURFACE ROUGHNESS AND WETTABILITY ANALYSIS

Surface roughness increases because of embedding of 2D materials

Wettability varies with 2D materials concentration and surface topography from hydrophilic to hydrophobic

Concentration of 2D materials in nickel sulfamate bath (g/L)

FRICTION COEFFICIENT

Friction stage: wear morphology

Figure 16. Wear morphology of pure nickel and nickel/2D material composite moulds during the initial friction stage: (a) pure nickel; (b) 0.5 g/L GO; (c) 1.0 g/L MoS₂; (d) 0.14 g/L WS₂. Note that selected concentrations of 2D materials are optimal to their respective lowest coefficient of friction.

WEAR MORPHOLOGY OF NICKEL/ GO MOULDS

E M B

WEAR MORPHOLOGY OF NICKEL/M_OS₂ Montactures MOULDS

WEAR MORPHOLOGY OF NICKEL/WS₂ MOULDS

E M B

SELF-LUBRICATING MECHANISM OF NICKEL/2D MATERIALS MOULD

Schematic illustration of wear mechanisms of pure nickel mould (a); self-lubricating mechanisms of 2D materials enhanced nickel moulds (b) and (c).

CONCLUSION

- *A low concentration of 2D materials* is recommended to be used to achieve homogenous distribution in the electroformed moulds.
- The role of GO and MoS₂ in enhancing the performance of nickel mould tools is reflected in mechanical properties and tribological properties, respectively, whereas WS₂ is both compatible and more significant.
- The incorporation of 2D materials not only modulates the nickel matrix grains growth but also easily forms *self-lubricating transfer film*, especially for WS_2/MoS_2 .
- The main wear mechanism is altered from *abrasive-dominated wear* for pure nickel mould to *adhesion-dominated wear* for nickel/2D materials composite moulds.
- Maximum microhardness of ~660 HV is achieved from 0.5 g/L WS₂, indicating a 3.67 *times* increase compared with pure nickel mould.
- A low concentration (0.14 g/L) of WS_2 shows the lowest COF, where the COF in the initial friction stage is 0.08, implying a decrease of 42.8% and 27 times increase in a lifetime, compared with pure nickel mould.

Thank you for your kind attention!

where innovation means business

