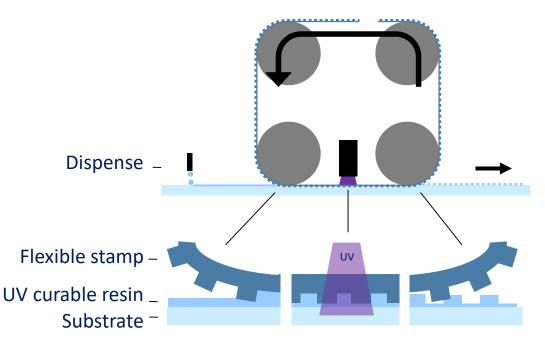

Simulating the layer thickness in roll-to-plate nanoimprint lithography

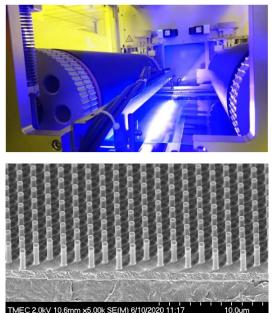
May 28, 2021

Jelle Snieder

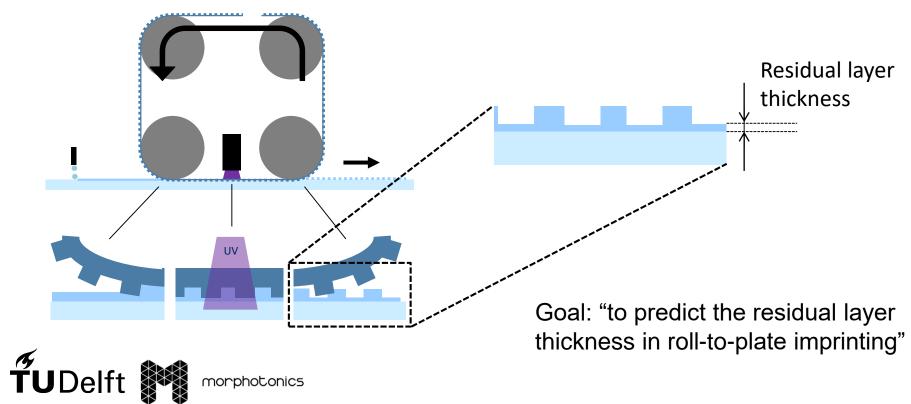
Delft University of Technology / Precision and Microsystems Engineering / Mechatronic System Design

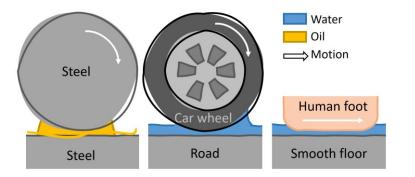

Morphotonics | about

- Technology large-area roll-to-plate microand nanoimprinting
 - Large-area: >1 m²
 - Textures: 500 μm down to 50 nm
- Business OEM supplier of equipment & consumables
 - Flexible stamps & UV curable resins



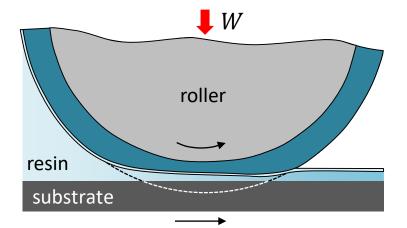
Morphotonics | R2P nanoimprinting





Atthi, N. et al. Fabrication of High Aspect Ratio Micro-Structures with Superhydrophobic and Oleophobic Properties by Using Large-Area Roll-to-Plate Nanoimprint Lithography. Nanomaterials 11, 339 (2021).

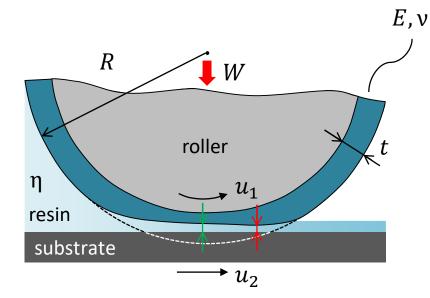
Modelling | research goal


Modelling | Elasto-Hydrodynamic Lubrication (EHL)

"Systems in which the **elastic deformation** due to the pressure in the lubricating film is not negligible"

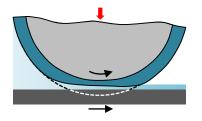
morphotonics

ŤUDelft


Wheeler, J.D. What is EHD film thickness?. https://www.tribonet.org/wiki/what-is-

5

Modelling | relevant variables


- Process variables
 - Load: W
 - Velocity: $U (= u_1 + u_2)$
- Material properties
 - Viscosity resin: η
 - Elastic modulus elastomer: E
 - Poisson ratio elastomer: v
- Geometry
 - Roller radius: R
 - Elastomer thickness: t

- Characteristic layer heights
 - Central layer height h_C
 - Minimum layer height h_M

Modelling | model set-up & result

Solution Multiphysics model Hertzian scaling 1.4 Pressure Flow modelling; 1.3 Layer height solve for pressure 1.2 -Hertz pressure 1.1 p(h, x) p_h -] א & [-] c 0.9 0.8 p(h, x)v(x)0.7 0.6 0.5 Elastic deformation; a_h 0.4 0.3 solve for deformation 0.2 v(x)0.1

Model based on: Habchi, W. Finite element modeling of elastohydrodynamic lubrication

-2

problems. (John Wiley & Sons, 2018).

X [-]

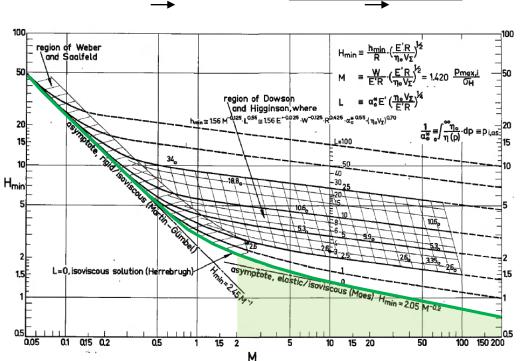
0

-1

Modelling | EHL literature

 Three dimensionless variables to describe all EHL solutions

- Load variable:
$$M = \frac{W}{E'R} \sqrt{\frac{E'R}{\eta U}}$$

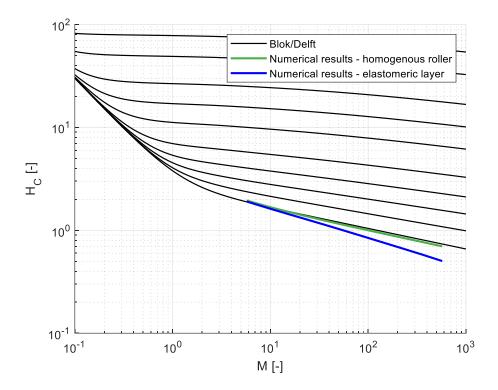

- Height variable:
$$H = \frac{h}{R} \sqrt{\frac{E'R}{\eta U}}$$

- Viscosity variable:
$$L = \alpha E' \left(\frac{\eta U}{E'R}\right)^{\frac{1}{4}}$$

morphotonics

• Delft / Blok diagram (1966)

ŤUDelft

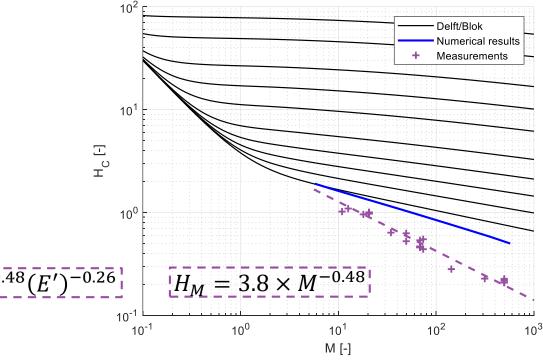


Moes, H. Lubrication and Beyond. (2000). 8

Modelling | numerical results

- Delft / Blok diagram
- Results model for
 - Homogeneous roller
 - Roller with elastomeric layer

$$M = \frac{W}{E'R} \sqrt{\frac{E'R}{\eta U}} \qquad H = \frac{h}{R} \sqrt{\frac{E'R}{\eta U}}$$

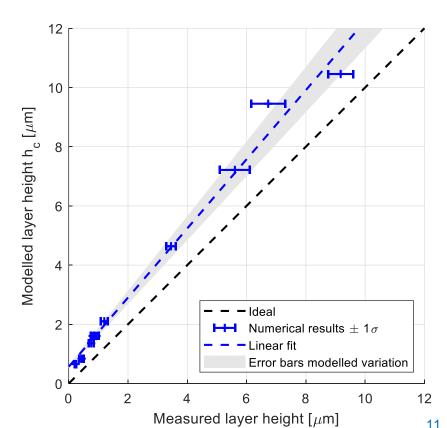

Experimental results | Delft / Blok diagram

- Variation of
 - Imprint equipment
 - Viscosity: η
 - Velocity: U
 - Load: W

ŤUDelft

$$M = \frac{W}{E'R} \sqrt{\frac{E'R}{\eta U}} \qquad H = \frac{h}{R} \sqrt{\frac{E'R}{\eta U}} \qquad 10^{0}$$
$$h_{C} = 3.8 \times (\eta UR)^{0.74} (W)^{-0.48} (E')^{-0.26}$$

morphotonics

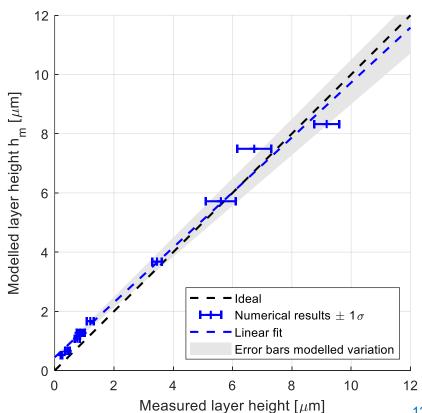

Experimental results | layer height graph h_c

 $\pm 3\%$

 $\pm 0.5\%$

+0.5%

- Modelled variation over process parameters
 - Elastic modulus *E*: \pm 3 Shore A
 - Viscosity η : $\pm 5\%$
 - Load W:
 - Elastomer thickness t:
 - Velocity U:

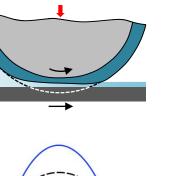

Experimental results | layer height graph h_m

 $\pm 3\%$

 $\pm 0.5\%$

+0.5%

- Modelled variation over process parameters
 - Elastic modulus E: \pm 3 Shore A
 - Viscosity η : $\pm 5\%$
 - Load W:
 - Elastomer thickness t:
 - Velocity U:



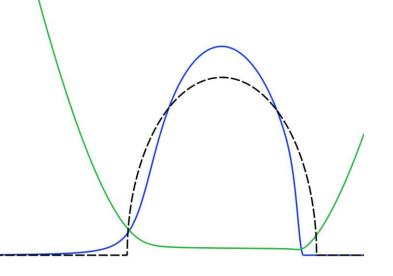
Conclusion & next steps

- Development of a numerical EHL model
 - Useful to study the layer thickness in R2P imprinting
- Empirical formula to predict the layer thickness
 - Based on EHL theory & dimensionless numbers
- Next steps
 - Determine the correct layer height from the model: h_m or h_c ?
 - Extension of the model
 - Flexible stamp
 - Textures

$h_C = 3.8 \times (\eta UR)^{0.74} (W)^{-0.48} (E')^{-0.26}$

Acknowledgments

This research was carried out within the ELANIA RVO project


Simulating the layer thickness in roll-to-plate nanoimprint lithography

May 28, 2021

Jelle Snieder

Delft University of Technology / Precision and Microsystems Engineering / Mechatronic System Design

