Controlling wettability through modeling-based surface topography engineering

7th PRN Conference, May 2021

Nikolaos Lempesis@epfl.ch

Problematic & Motivation

Surface wetting was identified as the prevalent mechanism related to adhesion of a liquid onto a solid surface

Implementation >

Guardian graphic | Source: Euromonitor. * forecast

Global PET plastic bottle production

More than **480bn** plastic bottles were made in 2016

```
By 2021 demand will climb up to ~580bn
```

Equivalent to 1M/min or 17k/s

Validation

If placed end-to-end, they extend more than halfway to the sun!

Solution

Motivation

3

Summary

Solution: Superomniphobic surfaces

- □ The way to reduce product loss is through the design of superomniphobic surfaces
 - > **Omniphobic** (θ > 90°) and **superomniphobic** (θ > 150°) are surfaces that repel all kinds of liquids

Validation

- > Possibilities to induce omniphobicity include:
 - Chemical treatment of surface (minor impact on wettability)¹
 - > Treatment of the surface topography (more promising)

Solution

Task:

> use mathematical modelling to quantify the relations between surface topography and wetting

Implementation >

1. Nishino, T et al. Langmuir, 1999, 15, 4321-4323

Summarv

4

Solution: Bio-inspired surface topography manipulation

□ It is evident that:

- > the Cassie-Baxter model is the most realistic one accounting for rough surfaces and partial wetting
- > However, unrealistic interface...

Motivation

Implementation > Validation

Solution: Model details & innovation

The liquid properties are expressed in terms of the sagging height h¹

Single-level surface topographies

Multi-level surface topographies

Motivation

Solution

Implementation

9

Fibers: Wetting scenarios

Fibers: Mathematical derivations

Model input

Parameter	Value	
liquid	Water	
surface	LDPE	
Young's angle θ^{Y}	73°	
liquid density ρ	997 kg/m ³	
liquid surface tension γ_l	72.8 mN/m	

 Lempesis et al., 2020

 Motivation
 Solution
 Implementation
 Validation
 Summary
 12

Fibers: Model output

Fibers: Scale effect

	Two-level topography			Single-level topography
Ext. Cassie/Baxter	Sine on Sine	Sine on Fibers	Fibers on Sine	Sine
Max. Contact Angle [°]	140	149	162	100
Scale1 [µm] (coarse scale)	<i>A</i> ₁ = 161	<i>R</i> = 28	<i>A</i> = 161	<i>A</i> = 81
	$\lambda_1 = 252$	<i>D_f</i> = 217	λ = 252	$\lambda = 126$
Scale2 [µm] (fine scale)	<i>A</i> ₂ = 16	<i>A</i> = 32	<i>R</i> = 7	n/a
	$\lambda_2 = 25$	$\lambda = 50$	<i>D_f</i> = 28	n/a
> Motivation	Solution	Implementatio	on Validation	Summary

Model validation: single-level topographies

Model validation: multi-level topographies

Summary and next steps

Implementation

- An extended Cassie-Baxter model with realistic interfaces was developed for single- and multi-level topographies
- Our model captures the transitions to the Wenzel and Young states and length scale effect
- Model results deviated on average from exp. data by (~4%)
- Addition of a 2nd level almost doubled the contact angle, while a 3rd level brought about an additional 12.5% increase
- Creation of a user-friendly Graphical User Interface (GUI)
- Extension of formalism to more surface topography types

Solution

Motivation

Modeling the wetting behavior of moving droplets (self-cleaning)

Summary

Validation

Acknowledgements

My Teachers

Prof. Doros Theodorou, NTUA Prof. Gregory C. Rutledge, MIT Prof. Ursula Röthlisberger, EPFL Prof. Sotiris E. Pratsinis, ETH Prof. Johann Stichlmair, TUM

My Collaborators

Prof. George C. Boulougouris, DUTH Prof. Markus Hütter, TU/e Prof. Rudolf J. Koopmans, HEIA Prof. Hansohl Cho, KAIST Prof. Per Magnus Kristiansen, FHNW Dr. Elmar Pöselt, BASF F 🔆 RCE Dr. Loukas Peristeras, NCSR Dr. Ruth Díez-Ahedo, TEKNIKER

Thank you **PRN** and everyone for your attention!

Funding

ΚΡΑΤΙΚΩΝ

ΥΠΟΤΡΟΦΙΩΝ

IKY

HEIA-FR HTA-FR

BODOSSAKI

FOUNDATION