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Problematic & Motivation

Surface wetting was identified as the prevalent mechanism related to adhesion of a liquid onto a solid surface

More than 480bn plastic bottles were made in 2016

By 2021 demand will climb up to ~580bn

Equivalent to  1M/min or 17k/s

If placed end-to-end, they extend more than halfway to the sun!

Approximately 6-8% of packaged material sticks

About 0.03 km3 water loss/year

lake de l’ Hongrin
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Solution: Superomniphobic surfaces

 Οmniphobic (θ > 90o) and superomniphobic (θ > 150o) are surfaces that repel all kinds of liquids

 The way to reduce product loss is through the design of superomniphobic surfaces

phobic 
(large θ)

philic
(small θ)

 Possibilities to induce omniphobicity include:
 Chemical treatment of surface (minor impact on wettability)1

 Treatment of the surface topography (more promising)

Task:
 use mathematical modelling to quantify the relations between surface topography and wetting 

Motivation Solution Implementation Validation Summary
1. Nishino, T et al. Langmuir, 1999, 15, 4321-4323
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Controlling wettability through modeling-based surface topography 
engineering

Nature comes
to the rescue!

Motivation 5Implementation Validation SummarySolution
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1. Young’s Model1 (1805) 2. Wenzel Model2 (1936)

cosθY =
𝛾𝛾𝑠𝑠 − 𝛾𝛾𝑠𝑠𝑠𝑠
𝛾𝛾𝑙𝑙 cosθW = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ cosθY cosθCB = 𝑓𝑓𝑠𝑠𝑠𝑠cosθY − 𝑓𝑓𝑙𝑙𝑙𝑙

 Full wetting 
 Rough surfaces    Rough surfaces  

 Smooth surfaces 

 Unrealistic surface 
 Full wetting  
 Unrealistic surface 

 Partial wetting 

 Unrealistic interface 
 Realistic surface 

1. Young, T. Phil. Trans. R. Soc. Lond. 1805, 
95, 65-87

2. Wenzel, R. N. Industrial and engineering 
chemistry. 1936, 28(8)

3. Cassie, A. B. D.; Baxter, S. Wettability of porous 
surfaces. 1944

3. Cassie-Baxter Model3 (1944)

 It is evident that:
 the Cassie-Baxter model is the most realistic one accounting for rough surfaces and partial wetting
 However, unrealistic interface…

Solution: Bio-inspired surface topography manipulation
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 The liquid properties are expressed in terms of the sagging height h1

Original Cassie-Baxter Model
Extended Cassie-Baxter Model 

(this work)

straight 
interface

no sagging
height

Sagging height

ℎ =
𝑙𝑙2

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐

𝑙𝑙 : characteristic length 
(topography dependent)

curved 
interface

sagging
height h

h

1. Tuteja, A. et al,PNAS, 2008, 105(47), 18200

Solution: Model details & innovation
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Capillary length

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 =
𝛾𝛾𝑙𝑙
𝜌𝜌 𝑔𝑔

Liquid
dependence
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Single-level surface topographies
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2D-Pillars Fibers

Sinusoids 3D-Pillars

Topography l

2D-Pillars Dp

Fibers Df

Sinusoids λ

3D-Pillars Dp



Multi-level surface topographies
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Fibers on Fibers Sinusoids on Fibers

Fibers on Sinusoids Sinusoids on Sinusoids

Pillars on Pillars

3x Sinusoids
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Fibers: Wetting scenarios
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Fibers: Mathematical derivations
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Lempesis et al., 2020
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Model input
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Lempesis et al., 2020

Parameter Value

liquid Water

surface LDPE

Young’s angle θY 73o

liquid density ρ 997 kg/m3

liquid surface tension 𝛾𝛾𝑙𝑙 72.8 mN/m
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Fibers: Model output

13

Lempesis et al., 2020

Comments

 Increase of contact angle 
as scale becomes smaller

 Our model captures the 
transition to the Young 
state (θY = 73o)

substrate Df

2R

θmax = 126ο
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Fibers: Scale effect
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Lempesis et al., 2020

Comments

substrate Df

2R

 As fiber scale drops, phobicity 
increases considerably

θmax = 149ο

 Fabrication of nanoscale 
patterns is a formidable 
technological challenge
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Model validation: single-level topographies
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Average error: 
4.6 %

Lempesis et al., 2021
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Model validation: multi-level topographies
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Average error: 
3.5 %

Lempesis et al., 2021



Summary and next steps
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 An extended Cassie-Baxter model with realistic interfaces 
was developed for single- and multi-level topographies

curved 
interface

sagging
height

h
 Our model captures the transitions to the Wenzel and 

Young states and length scale effect

 Model results deviated on average from exp. data by 
(~4%)

 Addition of a 2nd level almost doubled the contact angle, 
while a 3rd level brought about an additional 12.5% increase

 Creation of a user-friendly Graphical User Interface (GUI)

 Extension of formalism to more surface topography types

 Modeling the wetting behavior of moving droplets (self-cleaning) 
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