

Replication of hierarchical nanostructures on Polycarbonate via Isothermal injection moulding using NIL-textured films

Carlos Sáez Senior Researcher in the Unit of Polyn

in the Unit of Polymeric Materials and Processes **Eurecat**

Contents

- 1. Introduction
- 2. Film-insert manufacturing via *NIL* Nano-Imprint-Lithography
- 3. Replication on thermoplastic polymers via isothermal injection moulding
- 4. Results
- 5. Conclusions & next steps

Innovation with an impact

Proximity and trust

eurecat

We stay **close to our clients and their challenges** through our broad regional deployment in Catalonia.

Integration of multiple technologies

eurecaț

2. Functional printing and embedded devices

- Interactive and autonomous robotics
- 4. Functional textiles
- 5. Chemical Technology
- 6. Innovation and product
 - development

Digital

1. Sensor systems and IoT

- 2. Artificial intelligence
- 3. Big Data & Data Science
- 4. E-Health
- 5. Cybersecurity
- 6. Multimedia technologies

Biotechnology

1. Nutrition and health

- 2. Omic sciences
- 3. Soil

2. Air

4. Waste

1. Water

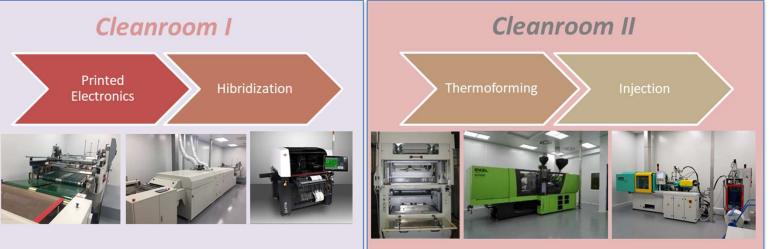
- 5. Energy
- 6. Batteries
- 7. Environmental
 - impact

Our differential value:

Our multi-technological capacities allow us to face complex challenges.

.....

••


1. Intro

eurecat

Plastic transformation pilot plant

- It is southern Europe's largest pilot plant for new technologies in plastic transformation.
- Technical experience and capacity focused on trials, manufacturing and
- industrialization, with the most innovative plastic transformation technologies (overinjection, printing, etc.).

- In-mould electronics
- Functionalization of polymeric parts by surface micro- & nanotexturisation
- Biopolymers

2. Film-insert manufacturing via *NIL* Nano-Imprint-Lithography

hograp

otolithograph Definition of 6 um featu

Photolithography

Definition of 30 µm features

8

Definition of 0.6 um feature

Etching depth: 0.5 µm

Etching depth: 4.8 µr

Etching depth: 25 µm

6

9

0.6 um thick OIR re

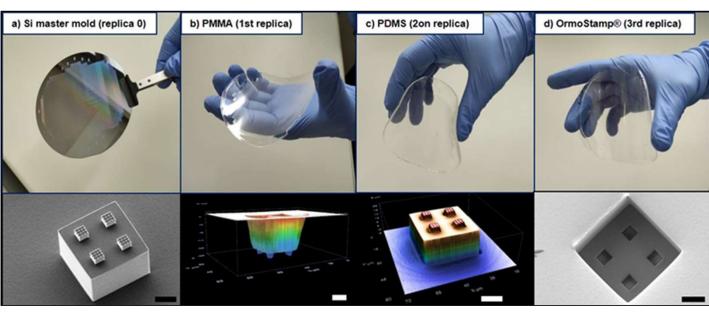
esist deposition

1.2 um thick res

esist deposition

1.2 µm thick resist

6


Level 3: LC Level 1: LA Level 2: LB ID D = Side size (μm) P = Pitch (μm) = Side size (µm) P=Pitch (µm) ID D = Side size (μm) P = Pitch (μm ID D 0,94 9,4 LC31 30 91,64 LA11 0,4 LB21 LC32 35 107,44 LA12 0,6 1,58 LB22 15,8 LC33 LA13 0,7 1,89 LB23 18,9 38 116,92 LA14 0,8 2,21 LB24 22,1 LC34 50 154,84 LA15 2,84 LB25 28,4 LC45 170,64 1 10 55 1,2 3,4 LB26 12 34 LC46 60 LA16 186,44

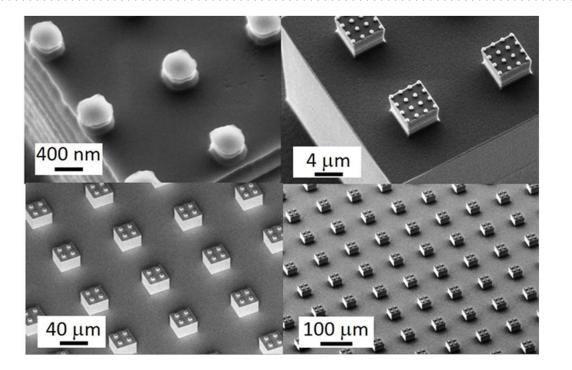
a)

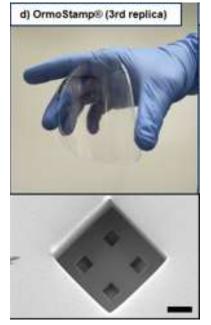
А

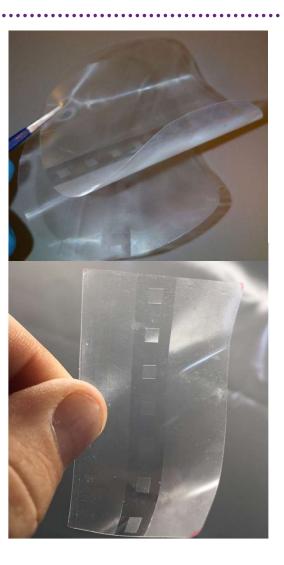
b)

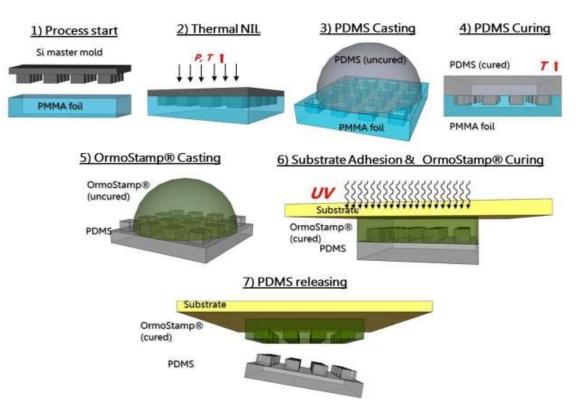
••• •••

From: Fabrication of films with surface hierarchical micro/nano structures for plastic injection molding; O. Muntada ^a, P. C. Sousa ^b, J. Llobet ^a, C. Saez ^c, N. Lozano ^c, F. Perez-Murano ^a




2. Film-insert manufacturing via *NIL* - Replication on polymeric film


eurecat


SEM images of the silicon mould

From: Fabrication of films with surface hierarchical micro/nano structures for plastic injection molding; O. Muntada ^a, P. C. Sousa ^b, J. Llobet ^a, C. Saez ^c, N. Lozano ^c, F. Perez-Murano ^a

2. Film-insert manufacturing via *NIL* Nano-Imprint-Lithography *Film & Coating materials*

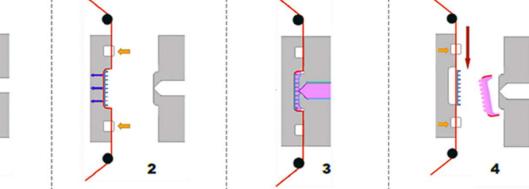
Substrates	Coating material	Thicknesses
PET /PC /PMMA	Ormocomp ®	50/125/250/500 vs 50µm
PET /PC /PMMA	Ormostamp ®	50/125/250/500 vs 50µm

eurecat

From: Fabrication of films with surface hierarchical micro/nano structures for plastic injection molding; O. Muntada ^a, P. C. Sousa ^b, J. Llobet ^a, C. Saez ^c, N. Lozano ^c, F. Perez-Murano ^a

3. Replication via isothermal injection moulding

eurecat



Engel 160 Tn 3K Machine 50 mm / 22 mm / 25 mm Mobile 6 Axis Robot

Engel e-motion 50 Tn 1K Machine 25 mm

General process

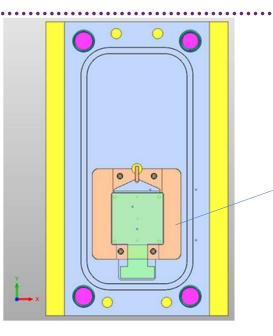
- Potentially consistent process (up to 100 cycles) scalable
- Resolution: low µm/ nm (> laser inserts + hierarchical structures)
- Low cost

1

• Film & coating thermally favourable (delayed polymer freezing) 9

3. Replication via isothermal injection moulding - Tooling

eurecat

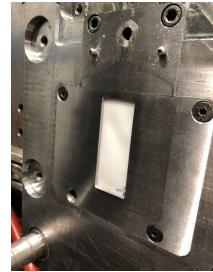


Part dimensions

70x70x1,25 to 4 mm

Textured zone

60x23 mm



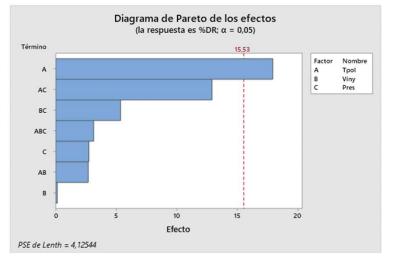
Fan-gate type

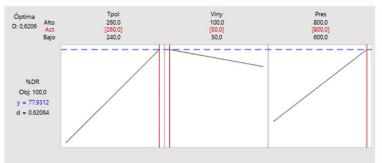
Polymers injected

PC, PMMA, PET, TPU,PLA, PBS, PHA

Insert & film mounted on mould

3. Replication via isothermal injection moulding - Processing


• Injected polymers


PC/PMMA/TPU/PET

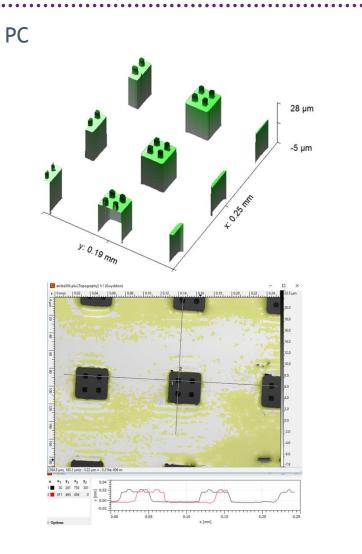
PLA/PHA/PBS

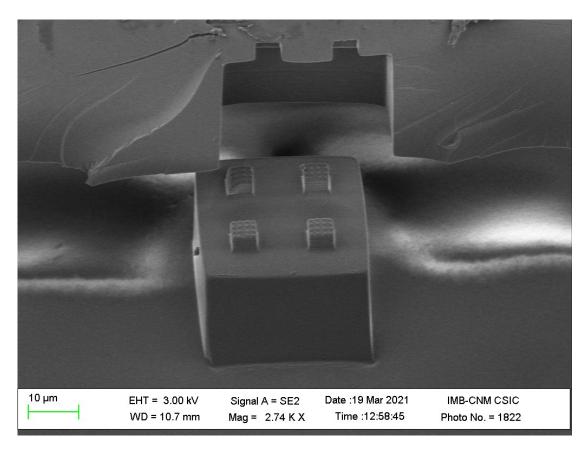
- Check for compatibility-non adhesion- film "survival" cycles
- 2^3 D.O.E. with T_m, V_{inj}, P_h

3. Replication via isothermal injection moulding - Parameters

 T_m , V_{inj} , P_{h_j} anti-stick coatings, compatibility between materials $T_m > T_g$ favours replication

V_{ini}: high speed~ 100/150 mm/s

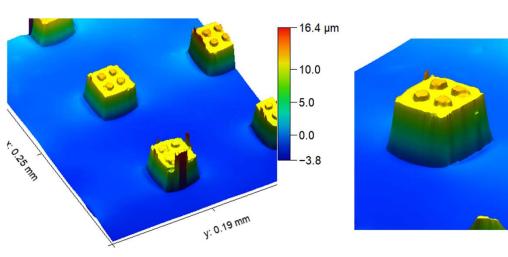

P_h: high levels

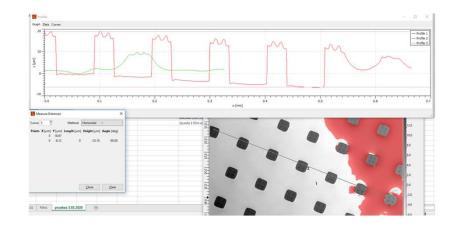

 $Long \ t_{\text{cooling}}$

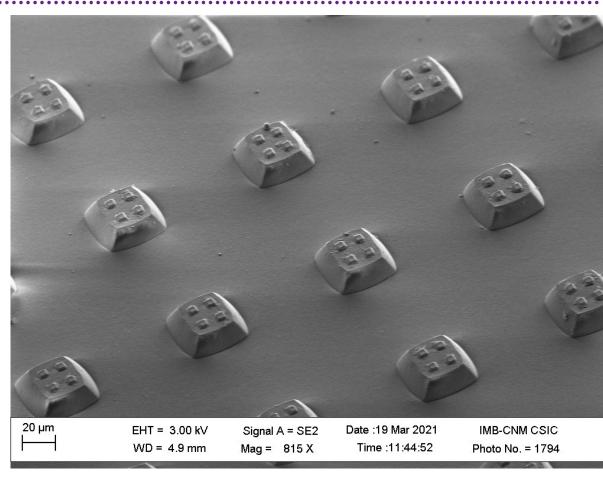
Factors should be balanced depending on nanoestructure (AR)

4. Results

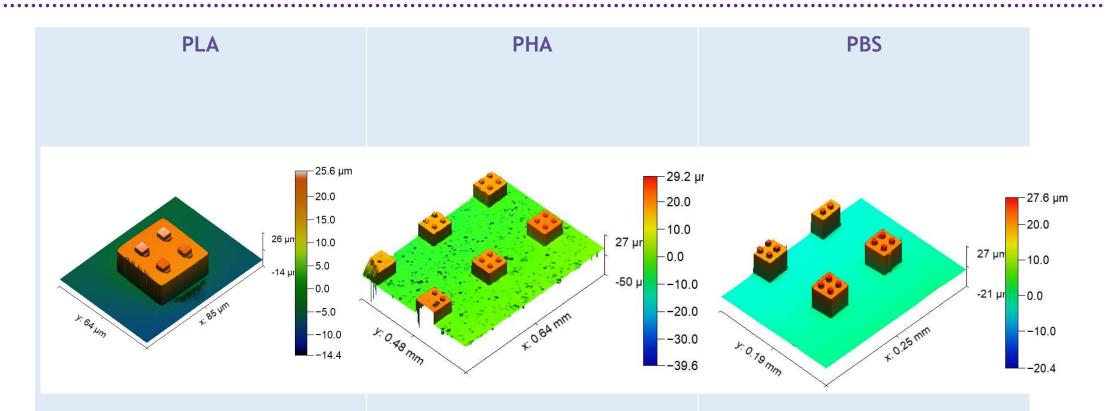
eurecat




Best results for PC on PC + Ormostamp[®] films

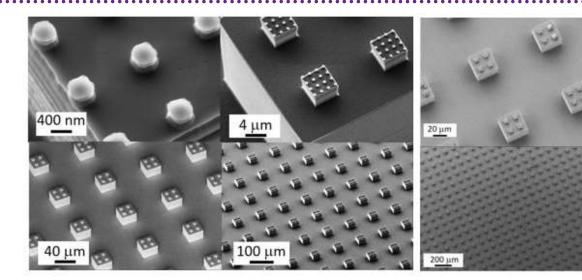


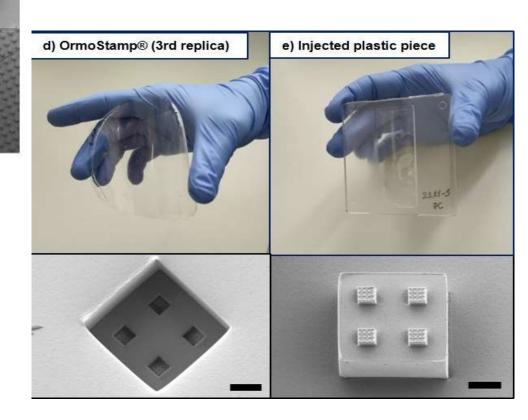
eurecat



Lateral wall-angle distortions for PMMA on PC + $Ormostamp^{\ensuremath{\mathfrak{B}}}$ films

4. Results

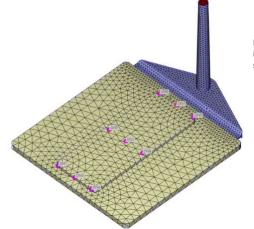

eurecat



Good replication results for all biopolymers tested at standard moulding conditions

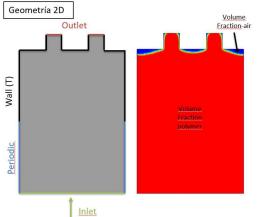
15

4. Results



5. Conclusions

- Need to improve film-coating assembly (*adhesion*) in order to increase cycles/film; working on:
 - Base film material
 - Coating material
 - Adhesion improvement
 - Automatic cutting film handling
- Optimization of anti-stick coatings needed, especially for PC/PMMA
- Need to implement large area characterization techniques
- Working on applications (medical & optics)
- Take to 3D!

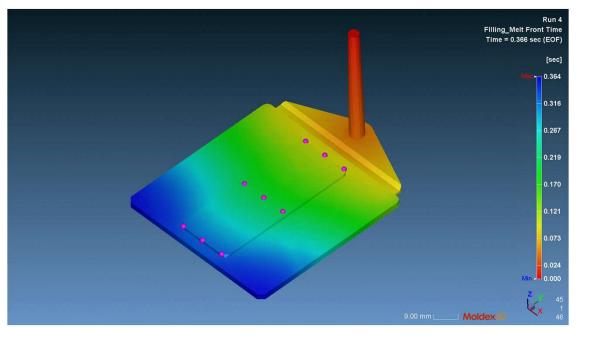

5. Next steps

eurecat

Detail of the mesh used for the injected part in the macroscale simulation (MOLDEX 3D)

Detail of the mesh used for the injected part in the micro-nanoscale simulation (ANSYS POLYFLOW)

Flu	iidos				
•	Aire: propiedades en función de T				
•	Polím	iero:			
	•	ρ= 1190 kg/m ³			
	•	μ: en función de <u>she</u> temperatura.	ear rate y		
	•	c_p, λ : en función T			
DC	DE 2 ³		Output		
•	Temp	eratura polímero	 % de llenado de la 		
	•	Tpmin	microcavidad?		
	•	Tpmax	 Volume Fraction d 	e	
	Tomas	anatura malda	and free man		

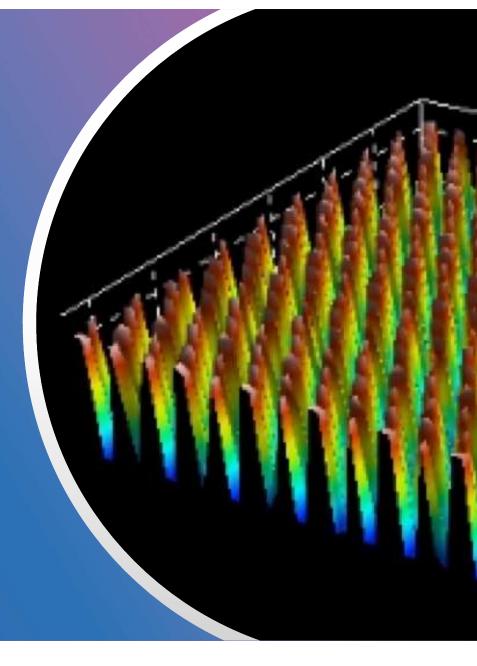

cavidad? • Volume Fraction de

polímero

- Temperatura molde Tm_{min}
- Tm_{max} . Velocidad
- .

.

Vmin • V_{max}


Centre Tecnològic de Catalunya

Thanks

Carlos Sáez Senior Researcher

in the Unit of Polymeric Materials and Processes **Eurecat**

